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ABSTRACT 

Sun glint correction algorithms were tested on a hyperspectral image containing cross-

track sun glint.  Spatial profiles of pixel radiance by pixel position were compared and 

slope values were calculated.  The algorithms of Hedley et al., Lyzenga et al., and Joyce 

over-corrected for sun glint in the visible and near-infrared wavelengths.  The method 

proposed by Kuster et al. was the weakest performer during visual comparison with the 

other method results.  Spectral plots of corrected spectra to the original spectra were 

compared.  Comparisons were performed on spectra from pixels with low and high 

amounts of sun glint.  Spectra were compared within the sun glint corrected images and 

between the corrected images and the original image.  Correlation values were calculated 

for each spectral comparison and averaged for each sun glint correction algorithm.  The 

Lyzenga et al. sun glint correction algorithm had the highest average correlation value of 

0.977 and is recommended for reducing sun glint in hyperspectral imagery when spectral 

integrity is required. 
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I. INTRODUCTION  

Remote sensing plays an integral role in improving our understanding of Earth’s 

near-shore environments.  Coastal remote sensing applications are widespread and varied.  

Optical remote sensing of coastal waters can be used to classify benthic habitat, 

determine bathymetry, and locate submerged mines.  Littoral zone optical remote sensing 

offers unique challenges.  One challenge that can potentially affect all coastal zone 

optical remote sensing applications is sun glint.  Sun glint in remotely sensed optical 

imagery acts as a barrier to seeing into the water column. 

Sun glint in imagery can incur large financial and scientific costs.  Purchasing 

imagery from commercial satellite vendors is expensive, especially if sun glint has 

rendered some of the imagery unusable.  Sun glint can create large errors in habitat 

classification and water depth measurements, corrupting scientific work.  In the case of 

mine warfare, sun glint can lead to loss of life and property if mine detection is obscured 

by sun glint.  Sun glint in imagery can be a serious challenge when using optical remote 

sensing for coastal zone management. 

Sun glint correction methods are designed to reduce the effect of sun glint in 

imagery.  Many of the sun glint correction methods take a multispectral imaging (MSI) 

approach to reducing the effect of sun glint even when applied to hyperspectral imagery.  

There has been less focus on hyperspectral imaging (HSI) and the impact sun glint 

correction has on the spectral integrity of corrected pixels. 

This thesis follows the work of Kay et al. (2009) to test the performance of 

existing published sun glint correction methods, but extends their review of sun glint 

correction methods to include a ranking process based on how well the corrected spectra 

correlate to the original spectra.  The intent of this thesis is to provide a recommendation 

on a sun glint correction method that reduces sun glint in hyperspectral imagery while 

maintaining spectral integrity for further spectral analysis. 

 



 2

THIS PAGE INTENTIONALLY LEFT BLANK  



 3

II. BACKGROUND 

A. THEORY 

1. Electromagnetic Radiation 

Light from the sun is the major source of incident radiation on Earth.  Passive 

optical remote sensing detectors measure the incident radiation reflected or emitted from 

the Earth’s surface.  Electromagnetic radiation (EMR) can be described as a wave or a 

stream of photons (Mather 2004).  When EMR is described as a wave, it is characterized 

by a certain wavelength from the electromagnetic spectrum.  Humans have the ability to 

see EMR wavelengths from approximately 400 to 700 nanometers (nm) in the visible 

(VIS) portion of the electromagnetic spectrum.  Within the VIS range of the 

electromagnetic spectrum, the human eye contains cones that are sensitive to red  

(~650 nm), green (~550 nm), and blue (~450 nm) portions of the electromagnetic 

spectrum (Olsen 2007).  Therefore, human sight can be modeled with a mix of red, green, 

and blue (RGB) colors.  In the field of remote sensing, the near-infrared (NIR) portion of 

the electromagnetic spectrum ranges from approximately 700 to 1,000 nm (Clark 1999).  

Together, visible and near-infrared (VNIR) make up the portion of the electromagnetic 

spectrum from approximately 400 to 1,000 nm.  The short wave infrared (SWIR) region 

of the electromagnetic spectrum is approximately 1,000 to 2,500 nm.  The hyperspectral 

test image for this thesis samples both VNIR and SWIR wavelengths. 

2. Statistics 

A data set contains information about objects from a population.  Objects can be 

characterized by variables.  A data set can contain values for one or more variables of an 

object.  The population of objects follows a distribution defining what values variables 

take and how often it takes these values.  A distribution can be described by its shape, 

center, and spread (Moore et al. 2011).  Most populations follow a normal, or Gaussian, 

distribution.  This type of distribution can be described by its bell shaped curve where the 

center is at the peak of the curve and the spread represents the decreasing tails of the  
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curve from either side of the peak.  The mean is the most common measure of a 

distribution’s center and can be calculated by summing all values of a data set and 

dividing by the number of values in 

 
1

ix x
n

  , (1) 

where x  is the mean, n  is the number of values in a data set, and ix  is the value at index 

i  of the data set.  The most common measure of spread in a distribution is the standard 

deviation.  The standard deviation measures how far values are from their mean, where 

2s  is the variance and the standard deviation s  is the square root of the variance in 

 2 21
( )

1 is x x
n

 
   (2) 

 21
( )

1 is x x
n

 
  . (3) 

Another important statistic of a population is the mode.  The mode is the value that 

appears most often in a data set.  It can be calculated by constructing a histogram of the 

data set and choosing the value with the highest frequency.  It is possible to have more 

than one mode as in multimodal distributions.  The above statistics are used in this thesis 

either directly in the sun glint correction algorithms or in the analysis of their results. 

A scatterplot displays the relationship between two variables measured on the 

same object by plotting one variable on the horizontal x-axis and the other variable on the 

vertical y-axis (Figure 1).  Each object’s value in a data set is a point on the scatterplot.  

A scatterplot can show the form, direction, and strength of a relationship (Moore et al. 

2011).  The form can show a linear or curved relationship.  The direction can indicate a 

positive or negative association between the variables.  A positive association is observed 

when high values of both variables occur together and a negative association is when 

high values of one variable occur in conjunction with low values of the other variable.  

Strength shows how close points on the scatterplot lie to a form such as a line and 



 5

indicates how well the variables relate to each other.  The correlation r  measures the 

direction and strength of a linear relationship in 

 
1

1
i i

x y

x x y y
r

n s s

   
       

 , (4) 

where x  is the x-variable and y  is the y-variable of a scatterplot.  The correlation value 

is between -1 and 1, where 0 indicates a very weak relationship, -1 and 1 indicates a very 

strong negative and a very strong positive relationship, respectively.  Correlation is used 

in this thesis to examine the performance of sun glint correction algorithms.  Figure 1 

illustrates how correlation measures the direction and strength of a linear relationship. 

 

Figure 1.   Example of how correlation measures the direction and strength of a linear 
relationship.  From Moore et al. (2011) 
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A least-squares regression line can be drawn on a scatterplot so that the sum of 

squares of the vertical distances of the data points from the line are as small as possible 

(Moore et al. 2011).  The least-squares regression line ŷ  in 

 0 1ŷ b b x   (5) 

has a slope 1b  in 

 1
y

x

s
b r

s
  (6) 

and a y-intercept of 0b  in 

 0 1b y b x  . (7) 

Scatterplots and least-squares regression can be used to determine the amount of sun glint 

in a pixel and are utilized in some published sun glint correction methods.  

3. Digital Image Data 

A digital remote sensing imaging system uses optical lenses to collect light that is 

split into a variety of wavelengths from the electromagnetic spectrum and passes it onto a 

detector which records the information as pixels in a two-dimensional grid (Campbell 

1996).  The grid represents an image made of rows and columns of pixels.  Each pixel 

contains an x and y coordinate specifying a location in image space and the data value of 

the pixel representing the quantity of EMR collected by the pixel.  A single image 

displays pixel value quantities in shades of grey between black and white.  Pixel locations 

in this thesis are specified using the (x, y) notation.  The number of shades depends on 

the bit depth of the pixel which defines the radiometric resolution of the image (Richards 

and Jia 2006).  For example, an 8-bit image has pixel values between 0 and 255, where  

0 is black and 255 is white, with shades of grey in between.  An 8-bit image is considered 

to have lower radiometric resolution than a 16-bit image where pixel values between  

0 and 65,535 are allowed.  The image utilized in this research has 16-bit radiometric 

resolution. 
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Multiple images, or image bands, depicting the same scene from different 

portions of the electromagnetic spectrum define MSI.  Combining three image bands 

from the RGB portions of the electromagnetic spectrum into a composite creates a true-

color image.  A typical multispectral remote sensing imaging system includes at least 

4 bands from the VNIR portion of the electromagnetic spectrum; 3 RGB bands and a NIR 

band.  When the NIR band is displayed instead of the red band in a RGB composite, it is 

possible to see outside of the VIS portion of the electromagnetic spectrum.  This is the 

case when vegetation appears bright red in false-color imagery because of the high 

reflectance of vegetation in the NIR portion of the electromagnetic spectrum.  One 

technique this thesis utilizes to analyze the performance of sun glint correction algorithms 

involves graphically visualizing the result of 3 RGB bands and a NIR band of sun glint 

corrected hyperspectral images. 

Hyperspectral imaging is when hundreds of image bands are collected 

simultaneously.  The individual bands in a hyperspectral image cover smaller portions of 

the electromagnetic spectrum that, when combined, sample a larger contiguous portion of 

the electromagnetic spectrum.  It is possible to derive a complete reflectance spectrum in 

each pixel of a hyperspectral image (Goetz et al. 1985).  Each band of a HSI system 

samples a range of wavelengths from the electromagnetic spectrum.  The wavelength 

range sampled, or band pass, is measured by the Full Width at Half Maximum (FWHM) 

of the sample’s normal distribution (Swayze et al. 2003).  This is considered the spectral 

resolution of a sensor and is normally stated as a single length for the entire image.  Often 

the single stated length is a nominal length due to the fact that spectral resolution varies 

slightly between bands and is averaged over all bands of an image.  The spectral 

resolution of an individual band can be given as a range between two FWHM 

wavelengths or as a single central peak wavelength.  Most HSI systems place their band 

samples at intervals that completely sample a portion of the electromagnetic spectrum 

without gaps.  Imaging spectrometry is the identification of features based on spectral 

signatures allowed by the high spectral resolution of HSI and the complete sampling of a 

portion of the electromagnetic spectrum.  Figure 2 depicts how HSI can be 

conceptualized as a data cube in three-dimensional coordinate space where the x-axis and 
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the y-axis represent a single image band in the horizontal direction and the -axis 

represents the number of image bands at certain wavelengths in the vertical direction.  

Figure 2 also illustrates how imaging spectrometry can identify features in the image 

based on the spectral signature of a pixel. 

 

 

Figure 2.   Depiction of the test image as a three-dimensional data cube with the 
spectral plot for pixel (1, 3000). 

Both multispectral and hyperspectral imagery data are stored by interleaving the column, 

row, and band dimensions of the data cube.  The order in which the dimensions are stored 

differs by interleaving type.  Image data stored by Band interleaved by pixel (BIP) are 

ordered by band, column, and row.  Band interleaved by line (BIL) stores image data by 

column, band, and row. Band sequential (BSQ) stores image data by column, row, and 

band.  The test image used in this thesis is in BIL format. 
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The size of objects that may be detected by a sensor is dependent on the spatial 

resolution of the imagery.  Spatial resolution of imagery is the amount of detail that can 

be observed in an image (Gibson 2000).  Higher spatial resolution imagery can resolve 

smaller objects.  Image spatial resolution is limited by the Rayleigh criterion (Olsen 

2007).  The Rayleigh criterion is used to calculate the distance apart two objects need to 

be in order to be distinguished from each other.  The calculation is based on the 

wavelength of EMR detected (), the diameter of the optical aperture ( D ), and the 

distance from the object ( R ) in 

 1.22
R

D

  . (8) 

Spatial resolution of a digital remote sensing imaging system is defined by the Ground 

Sample Distance (GSD) or the distance on the ground between pixels.  The image 

utilized in this research has a GSD of one meter. 

4. The Interaction of Electromagnetic Radiation with Matter 

The interaction of EMR with matter can be described as the movement of light 

between two different media.  The velocity of light changes as it is transmitted from one 

medium to another (Hecht 2001).  The change of velocity of light in a medium is 

compared to the velocity of light in a vacuum to obtain the index of refraction for the 

medium in question.  Snell’s Law calculates the angle at which light is refracted when 

transmitted through a medium using both the index of refraction and the angle of 

incidence of light upon the medium (Feynman 1985).  Light can be scattered off the 

surface of a medium in many unpredictable directions or absorbed by a medium and 

transferred as internal energy which is emitted as heat.  Light can also reflect off a 

surface in a single, predictable direction with the angle of reflection equal to the angle of 

incidence.  The Fresnel equations calculate the fraction of light reflected off the surface 

of a medium and the fraction of light transmitted through the medium (Mobley 1994).  

Light reflected off a smooth surface is called specular, or Fresnel, reflection and is the 

cause of sun glint in imagery. 
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5. Electromagnetic Properties of Water 

The atoms that comprise water molecules consist of electrons orbiting a nucleus.  

Electrons orbit the nucleus at discrete energy levels (Burns 1993).  When a photon of a 

correct wavelength interacts with an atom, the electron is excited to a higher energy level 

and the photon is absorbed.  If the electron falls to a lower energy level, a photon of a 

certain wavelength is emitted.  The wavelengths of photons from the VIS portion of the 

electromagnetic spectrum do not contain the correct energy level to interact with the 

atoms of water molecules (Mobley 1994).  Therefore, EMR from the VIS portion of the 

electromagnetic spectrum is not absorbed by the water molecule.  The wavelengths of 

photons from the NIR portion of the electromagnetic spectrum contain the correct energy 

level to excite the electrons of the atoms and are absorbed by the water molecules.  Water 

appears blue-green due to the blue-green wavelengths at the absorption minimum shown 

in Figure 3. 

 

Figure 3.   Spectral absorption coefficient of pure water (solid line) and of pure sea 
water (dotted line) as a function of wavelength.  The dashed line represents 

the VIS band.  Modified from Mobley (1994). 



 11

Pure, optically deep water is a complete absorber of NIR EMR.  Water is 

considered optically deep if it is deep enough that no EMR is reflected off of the bottom 

back through the water column and collected by the detector.  Most natural waters are not 

pure and contain biological or inorganic materials suspended in the water column 

(Mobley 1994).  Water will not absorb all NIR EMR if some NIR EMR is reflected off of 

material suspended in the water column.  This causes natural waters to be a strong 

absorber of NIR EMR rather than a complete absorber of NIR EMR. 

6. Radiometry 

When EMR from the sun is described as photons, the energy of the photons 

incident on a unit of area of a plane perpendicular to and at a distance away from the sun 

can be calculated using the inverse square law.  The inverse square law for irradiance 

states that the quantity or intensity of energy is inversely proportional to the square of the 

distance to the source of energy (Mobley 1994).  Irradiance is the measurement of EMR 

from the sun at a given area of Earth in watts per square meter.  At the top of the Earth’s 

atmosphere irradiance is referred to as the solar constant and is roughly 1,367 W m-2 

(Frohlich 1983).  At the Earth’s surface, downward irradiance is highly variable, based on 

the solar angle, and less than the solar constant due to the interaction of photons with 

atmospheric particulate matter.  When EMR from a certain wavelength is measured, then 

irradiance becomes spectral irradiance and wavelength is included in the unit of 

measurement (W m-2 nm-1). 

Radiance describes the quantity of EMR emitted or reflected from a surface 

within a given solid angle in a specific direction.  Solid angle is a two dimensional angle 

in three dimensional space that resembles a cone that originates from a point and projects 

a circular area on a surface (Mather 2004).  Solid angle is important in remote sensing 

because it indicates the amount of upwelling EMR detected by a sensor through the 

optical system’s aperture at its angle of view.  Solid angle uses steradians (sr) as its unit 

of measurement.  The unit of measurement for radiance is similar to irradiance but with 

the addition of the steradian unit for the solid angle (W sr-1 m-2) and (W sr-1 m-2 nm-1) for  
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spectral radiance.  For this thesis, spectral radiance is the unit of measurement for pixel 

values in the image used to test sun glint correction algorithms and has a slightly 

modified form of (mW cm-2 sr-1 µm-1). 

7. Imaging Spectrometry 

The electromagnetic spectrum can be described as a continuous spectrum 

representing energy from a theoretical blackbody radiating at different wavelengths.  

Kirchhoff’s law states that energy absorption is equal to energy emission for an object in 

thermal equilibrium (Chandrasekhar 1960).  A blackbody is a perfect absorber of energy 

at all wavelengths and therefore is a perfect emitter of energy at all wavelengths.  

Planck’s law calculates the amount of energy emitted at each wavelength by a blackbody.  

When blackbody radiation is plotted by wavelength, Planck’s law states that the shape of 

the curve does not change as a function of temperature, only the amplitude and peak 

location of the curve changes as shown in Figure 4. 

 

Figure 4.   Blackbody radiation as a function of wavelength.  After Olsen (2007) 
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Planck’s law calculates energy as radiance in 

 
2

5

2 1

1
hc

kT

hc
Radiance L

e
 


, (9) 

where c  is the speed of light in a vacuum, h  is the Planck constant, k  is the Boltzmann 

constant, T  is temperature, and   is wavelength (Olsen 2007). 

 The solar spectrum is not continuous as would be expected if the sun was a 

blackbody.  Rather the solar irradiance curve follows the blackbody curve, but is not 

smooth like the blackbody curve shown in Figure 5. 

 

Figure 5.   The solar spectrum.  From Phillips (1995) 
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This is due to solar absorption features.  Solar absorption features are gases above the 

sun’s surface that contain atoms or molecules that absorb photons of certain wavelengths.  

These create absorption lines in the solar spectrum called Frauenhofer Lines.  The 

Frauenhofer Line at 760 nm is caused by oxygen and is particularly important to one of 

the sun glint correction methods tested in this thesis. 

Some of the most prominent absorption features seen in imaging spectrometry are 

from water vapor and carbon dioxide in Earth’s atmosphere.  Figure 6 illustrates how the 

transmittance of photons through Earth’s atmosphere changes as a function of 

wavelength. 

 

Figure 6.   MODTRAN modeled atmospheric transmittance in the VNIR and SWIR 
wavelengths.  From Berk et al. (1989) 

Clark (1999) describes these changes in transmittance as atmospheric “windows” for 

remote sensing.  Major water vapor absorption features for the VNIR and SWIR 

wavelengths are located approximately at 900, 1100, 1400, and 1900 nm.  Major carbon 

dioxide absorption features for the VNIR and SWIR wavelengths are located at 

approximately 2010 and 2080 nm (Van Der Meer and De Jong 2006).  To derive physical 
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parameters such as reflectance from imaging spectrometry, atmospheric correction must 

be applied to imagery.  Many atmospheric correction methods are based on the 

MODerate resolution atmospheric TRANsmission (MODTRAN) model with the Tafkaa 

method showing promise for littoral zone remote sensing (Montes et al. 2004).  The test 

image used in this thesis is not atmospherically corrected to determine the true effect of 

sun glint correction algorithms on unmodified pixel values. 

8. Radiative Transfer 

Radiative transfer theory helps to model EMR flow from the sun to an optical 

remote sensing detector above Earth’s surface.  Radiative transfer models are useful to 

understanding the interaction of EMR with features on earth and how that interaction 

manifests itself in remotely sensed imagery.  Bukata et al. (1995) provides a good 

introduction to radiative transfer theory.  Hochberg et al. (2003) provides a useful 

radiative transfer model for modeling sun glint and for developing sun glint correction 

algorithms.  A sensor's measurement of total upwelling radiance ( )TOTL   at wavelength 

  includes contributions from the atmosphere ( )atmL  , water surface ( )gL  , and  water 

column ( )wL   in 

 ( ) ( ) ( ) ( ) ( ) ( )TOT atm g wL L T L T L          , (10) 

where atmospheric transmittance is ( )T   (Hochberg et al. 2003).  Equation (10) can be 

expanded for image data by including the spatial distribution function ( , ; )xf x y   for 

each of the radiance terms.  The spatial distribution functions are relative scaling factors 

for each pixel and wavelength ( , ; )x y  , while absolute magnitudes are provided by the 

radiances ( )xL  .  Sun glint can be modeled in image data with the spatial distribution 

function ( , )gf x y .  The spatial distribution function ( , )wf x y  can model the subsurface 

features in image data including features from the water column and the sea floor in 

( , ; ) ( )

( , ; ) ( ) ( ) ( , ; ) ( ) ( ) ( , ; ) ( ).
TOT TOT

atm atm g g w w

f x y L

f x y L T f x y L T f x y L

 
       

 

      
 (11) 
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If atmospheric correction is applied to an image, ( , ; ) ( )atm atmf x y L   is removed and 

Equation (11) becomes 

 [ ( , ; ) ( )] ' ( , ; ) ( ) ( , ; ) ( ).TOT TOT g g w wf x y L f x y L f x y L           (12) 

The goal of sun glint correction methods is to calculate and remove ( , ; ) ( )g gf x y L   

and produce the desired water leaving radiance image ( , ; ) ( )w wf x y L   (Hochberg et 

al. 2003). 

B. SUN GLINT 

1. Sun Glint Geometry 

Mobley (1994) defines geometrical radiometry as the union of euclidean 

geometry and radiometry.  Sun glint geometry can be modeled using geometrical 

radiometry and is summarized by three components consisting of the sun angle, sensor 

viewing angle, and surface orientation.  Sun angle and sensor viewing angle are typically 

measured from zenith where the sun angle is I , sensor viewing angle is F , and I, R, 

and Z are the incidence, reflection, and zenith vectors, respectively, in Figure 7.   The 

zenith vector is a straight line drawn from the center of earth to the sun in a direction 

opposite of gravity.  Sun glint occurs when the sun angle is equal to the sensor viewing 

angle with respect to the surface normal vector n in Figure 7.  For sun glint to occur, the 

incidence, reflection, and surface normal vectors must lie in the same plane (Kay et al. 

2009).  In specular reflection from a flat water surface, the surface normal vector is 

equivalent to the zenith vector and the sun angle and sensor viewing angle are equal to 

angle  in Figure 7.  In rough water, the surface normal vector is not equivalent to the 

zenith vector and the sun and sensor viewing angles are not equal to angle  .   

 



 17

 

Figure 7.   Sun glint geometry of a smooth surface (A.) and a rough surface (B.).   
After Kay et al. (2009) and Mobley (1994) 

Sun glint in remotely sensed imagery occurs in two forms; cross-track and wave-

induced.  Cross track glint occurs when the sun angle is such that sun glint manifests 

itself perpendicular to the motion of the sensor usually leaving half of the image with 

high intensity sun glint and the other half with very little sun glint.  Wave-induced sun 

glint occurs when the surface orientation component of sun glint geometry introduces 

reflections off of wave facets.  Sky glint is the reflection of atmospherically scattered 

light off of the wave facets of the sea surface (Kay et al. 2009).  Both sky glint and wave-

induced sun glint can create ocean surface clutter obscuring features in the water.  Figure 

8 depicts a sea surface model and wave facets positioned in different orientations. 
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Figure 8.   Model of the sea surface with triangular wave facets.  From Mobley (1994) 

Sky glint can be more of a factor than sun glint in some images that contain wave-

induced ocean surface clutter.  Sun glint correction methods may not minimize sky glint 

resulting in the need for different methods to reduce ocean surface clutter (Silva and 

Abileah 1999).  This thesis deals specifically with cross track sun glint and does not 

address sky glint. 

2. Sun Glint Avoidance 

Sun glint is strictly a geometric problem.  Therefore, careful flight planning can 

increase the likelihood of sun glint-free imagery.  The position of the sun near solar 

zenith and during seasons of high inclination can increase the potential of creating sun 

glint in imagery.  Some imaging systems attempt to avoid sun glint in their images by 

employing tilting sensors that alter the viewing angle of the sensor with respect to the 

location of the sun.  Tilting sensors are typically deployed on satellite platforms where 
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the sun's position relative to the sensor can be calculated.  The Compact High Resolution 

Imaging Spectrometer sensor utilizes a multi-look angle image collection method to 

eliminate sun glint (Van Mol and Ruddick 2004).  In situations where sun glint is 

unavoidable and appears in imagery, sun glint correction algorithms can be used to 

minimize its effects. 

3. Sun Glint Correction in Low Spatial Resolution Imagery 

Remote sensing imaging systems used to study ocean color typically have spatial 

resolutions on order of hundreds of meters or kilometers.  Included in this category are 

the Sea-viewing Wide Field-of-view Sensor, the Medium Resolution Imaging 

Spectrometer, and the Global Imaging Sensor (Wang and Bailey 2001) (Ottaviani et al. 

2008) (Montagner et al. 2003) (Fukushima et al. 2007).  When sun glint occurs in images 

from these types of sensors, the sun glint may cover hundreds of meters of ocean.  Most 

sun glint correction algorithms developed for low spatial resolution sensors are based on 

work from Cox and Munk (1954).  Cox and Munk (1954) used statistical analysis to 

create probability distribution functions for sea surface state by measuring aerial 

photographs and wind-speed.  While the Cox and Munk (1954) method may work well 

for low spatial resolution imagery, it is not suitable for high spatial resolution imagery 

where the imagery is at the wave face scale opposed to the sea surface scale. 

4. Sun Glint Correction in High Spatial Resolution Imagery: Methods 
Comparison 

a. Silva and Abileah 

Sun glint in high spatial resolution imagery can be removed with sun glint 

correction methods that exploit the high absorption of water in the Near Infrared (NIR) 

wavelengths.  Silva and Abileah (1999) provide a radiative transfer model where ( )uL   

is upwelling radiance, ( )bL   is backscattered and reflected radiance from the sky, and 

( , )bf x y  is the spatial distribution function for the backscattered and reflected radiance 

from the sky in 

 [ ( , ; ) ( )] ' ( ) ( , ; ) ( ) ( , ; ) ( )TOT TOT u b b g gf x y L L f x y L f x y L            . (13) 
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Upwelling radiance is combined with the backscattered and reflected radiance from the 

sky due to the difficulty of separating the two contributions to create the scattered 

radiance term ( , ) ( )s sf x y L   in 

 [ ( , ; ) ( )] ' ( , ; ) ( ) ( , ; ) ( ).TOT TOT s s g gf x y L f x y L f x y L           (14) 

( )gL  and ( )sL   are obtained from the top and bottom one to five percent of the 

brightest and darkest pixels, respectively.  The ( , )gf x y  and ( , )sf x y  terms are obtained 

from a least squares regression and combined with ( )gL   and ( )sL   to estimate sun 

glint.  The sun glint estimate is then subtracted from the input image resulting in an 

image free of sun glint. 

b. Mustard et al. 

Mustard et al. (2001) identified the magnitude of the sun glint contribution 

in the NIR band where ( , ; ) ( )w wf x y NIR L NIR  should effectively be 0.  Pixels of NIR 

bands that show no reflectance of objects on the surface or returns from the seafloor and 

are said to be optically deep.  Equation (12) reduces to 

 [ ( , ; ) ( )] ' ( , ; ) ( ).TOT TOT g gf x y NIR L NIR f x y NIR L NIR    (15) 

All aquatic NIR images are the product of the spatially relative glint intensity weighted 

by the absolute glint intensity.  Absolute glint intensity varies across wavelengths.  

Because water reflectance has a weak dependence on wavelength (Mobley 1994), relative 

glint intensity in the VIS wavelengths varies accordingly with the relative glint intensity 

in the NIR wavelengths, as shown in 

 ( , ; ) ( , ; ) ( , ).g g gf x y VIS f x y NIR f x y   (16) 

c. Hochberg et al. 

Hochberg et al. (2003) created an algorithm that finds the brightest ( , )i j  

and the darkest ( ', ')i j  NIR pixels in an image and subtracts them to obtain ( )gL NIR  

using 
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( ) ( , ; ) ( ) ( ', '; ) ( )

[ ( ) ( )] ( ).

g g g g g

g w w

L NIR f i j NIR L NIR f i j NIR L NIR

L NIR L NIR L NIR

    

 
  (17) 

The absolute magnitude of water leaving radiance in the NIR bands ( )wL NIR  should be 0 

due to the absorption of water in the NIR wavelengths.  Hochberg et al. (2003) found that 

residual radiance nearly always made ( )wL NIR  positive.  Scaling the NIR image to be 

between 0 and 1 is accomplished by 

 
[ ( , ; ) ( )]' ( )

( , ) .
( )

TOT TOT w
g

g

f x y NIR L NIR L NIR
f x y

L NIR

 
  (18) 

Equation (17) is repeated with the VIS bands substituted for the NIR band such that 

 
( ) ( , ; ) ( ) ( ', '; ) ( )

[ ( ) ( )] ( ).

g g g g g

g w w

L VIS f i j VIS L VIS f i j VIS L VIS

L VIS L VIS L VIS

    

 
 (19) 

The product of Equations (18) and (19) is subtracted from [ ( , ; ) ( )]'TOT TOTf x y VIS L VIS  to 

obtain the VIS bands with the glint removed, as shown in 

 ( , ; ) ( ) [ ( , ; ) ( )] ' ( , ) ( ).w w TOT TOT g gf x y VIS L VIS f x y VIS L VIS f x y L VIS      (20) 

d. Hedley et al. 

The weakness of the Hochberg et al. (2003) sun glint correction method is 

that a linear relationship between the brightest ( , )i j  and the darkest ( ', ')i j  NIR pixels is 

established with only two pixels.  As a result, this method is sensitive to outliers and 

requires masking all land and cloud pixels prior to analysis.  Hedley et al. (2005) 

improved upon the method by establishing a linear relationship between the NIR and VIS 

bands using linear regression based on a range of optically deep water pixels affected by 

sun glint that would otherwise have consistent spectral brightness as shown in Figure 9. 
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Figure 9.   Graphical interpretation of the Hedley et al. (2005) sun glint correction 
method.  From Hedley et al. (2005) 

First, a sample of deep water pixels with a variety of glint intensities is chosen and the 

minimum NIR brightness NIRMin  of the sample is calculated.  To remove glint in each 

VIS band i , a linear regression is performed on the NIR pixel brightness NIRR  against the 

pixel value of VIS band iR .  The product of slope ib  and NIRR  minus NIRMin  is 

subtracted from iR  to obtain the pixel 'iR  with glint removed such that 

 ' ( ).i i i NIR NIRR R b R Min     (21) 

Because the sample selection is user-based, there is no need to mask land and cloud 

pixels.  Linear regression makes the method robust to outliers caused by non-optically 

deep pixels. 
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e. Lyzenga et al. 

A slightly different approach to the Hedley et al. (2005) sun glint 

correction method involves computing the covariance of each VIS band relative to the 

NIR band (Lyzenga et al. 2006).  Similar to the Hedley et al. (2005) method, a user 

defines a sample area of varying glint intensities over deep water.  Instead of using linear 

regression to calculate the coefficient that relates the NIR sun glint signal to the VIS 

band, Lyzenga et al. (2006) uses the equation 

 
1 1 1

1 1 1N N N

ij in jn in jn
n= n= n=

ρ = L L L L
N N N

    (22) 

to calculate the covariance between the VIS (i) and NIR (j) bands i j .  The covariance is 

divided by the variance of the NIR band 

 ij
ij

jj

r



  (23) 

to obtain the coefficient i jr .  The correction is applied using a modification of Equation 

(21) 

 ' ( )i i ij NIR NIRR R r R Mean    , (24) 

using the mean NIR radiance used rather than the minimum.  The modal NIR radiance 

can also be used (Joyce 2004). 

f. Goodman et al. 

The residual radiance in the NIR waveband found by Hochberg et al. 

(2003) can result in both over and under corrected spectral outputs in the VIS bands when 

applied to imagery containing cross-track sun glint (Goodman et al. 2008).  The 

Hochberg et al. (2003) method can be successful at correcting wave-induced sun glint 

because only one correction relationship is applied to the entire image.  In the case of 

cross-track sun glint, a more dynamic approach is needed to correct for a greater variety 

of sun glint intensities.  Goodman et al. (2008) found that performing corrections 

independently on each pixel was more effective at removing cross-track sun glint.  A 
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method derived from Lee et al. (1999) was used where sun glint correction was applied as 

a constant offset across all wavelengths such that reflectance at 750 nm 750R  is equal to a 

spectral constant  in 

 750'i iR R R    . (25) 

The spectral constant offset is calculated using the product of two summed constants and 

the difference between the reflectance values at 640 nm and 750 nm, as in 

 640 7500.000019 0.1[ ].R R     (26) 

The constant values force the reflectance at 750 nm to approach zero, but allow it to be a 

little above zero for shallow water.  The values provided by Goodman et al. (2008) are 

for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and would need to be 

adjusted for other sensors by optimizing with in situ data. 

g. Kuster et al. 

Kuster et al. (2009) suggests the amount of glint is proportional to the 

depth of the 760 nm oxygen absorption feature D  in 

 
(739) (860)

(760)
2

R R
D R


  , (27) 

where ( )R   is the reflectance in the 739, 760, and 860 nm bands, respectively.  The  

739 and 860 nm bands are outside of the 760 nm oxygen absorption feature and D  

represents the reflectance without oxygen present.  The D  value at a certain pixel ( , )x y  

is divided by the maximum D  value found in a deep water region in 

 
max

( , )
( , )norm

D x y
D x y

D
  (28) 

to obtain the normalized ( , )normD x y  value of a pixel.  If D  is zero, then it follows that 

the pixel has no glint.  The spectral variation of glint ( )G   is calculated by subtracting 

the NIR band with the lowest D  value from the NIR band with the highest in 

 ( ) ( ) ( ).bright darkG R R     (29) 
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The product of ( )G   and ( , )normD x y  gives the amount of glint in each band at each 

pixel.  The glint is then subtracted from the reflectance of each pixel in each band 

( , ; )R x y   in 

 ( , ; ) ( , ; ) ( ) ( , )w normR x y R x y G D x y     , (30) 

where ( , ; )wR x y   is the glint corrected pixel.  This method requires the high spectral 

resolution of hyperspectral imagery with bands very close to 760 nm to determine the 

oxygen absorption feature. 
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III. DATA AND METHODOLOGY  

A. DATA 

The hyperspectral image used for this thesis is from an airborne survey near San 

Diego, California performed by SpecTIR Inc. on March 20, 2012, under contract by 

United Technologies (UTC) Aerospace Systems (formerly Goodrich Inc.).  The test 

image used is one of seven flight lines covering coastal waters off of La Jolla, California 

originating off-shore and extending on-shore.  The imaging system used was a 

ProSpecTIR-VS3 dual sensor bracket mount combining Airborne Imaging Spectrometer 

for Applications (AISA) Eagle and Hawk sensors into a single imaging system (SpecTIR 

2011).  The AISA Eagle is a VNIR sensor with a wavelength range of approximately 

400–970 nm and the AISA Hawk sensor is a SWIR sensor with a wavelength range of 

approximately 970–2,450 nm.  The integrated imaging system has 360 bands with a 

spectral range of approximately 400 to 2,450 nm and a swath width of 320 pixels.  The 

full extent of the test image is 320 by 3,528 pixels in BIL format.  Radiometric and 

spectral calibration was performed on the test image by SpecTIR, but no atmospheric 

correction was applied.  Figure 10 provides the actual FWHM band passes of the 5 nm 

nominal spectral resolution. 
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Figure 10.   Graph of FWHM band passes by wavelength for the ProSpecTIR-VS3 
imaging system. 

The survey was flown mid-day to induce sun glint at an altitude that provided one meter  

GSD.  The data are stored as 16-bit unsigned integers in calibrated radiance units  

(mW cm-2 sr-1 µm-1) with a scaling factor of 1,000.  Figure 11 illustrates that the image 

has a strong gradient of cross-track sun glint affecting the right half of the image.  The 

red line across the width of the image in Figure 11 is a Region of Interest (ROI) drawn 

over optically deep water with no surface features.  The deep water ROI is the 3,000th 

row of the image representing all 320 pixel columns across the scan width.   
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Figure 11.   True-color composite depiction of the hyperspectral test image with cross 
track sun glint.  Blue represents the (456–464 nm) band, green represents the 
(548–555 nm) band, and red represents the (637–645 nm) band.  The red line 

represents the deep water ROI pixel locations of (1-320, 3000). 

Figure 12 provides pixel radiance values of four VNIR bands from the test image 

plotted against the position of the pixel along the deep water ROI.  The four VNIR bands 

plotted in the graph include blue (456–464 nm), green (548–555 nm), red (637–645 nm), 

and NIR (856–865 nm).  The spatial profiles show progressively greater radiance 

variance from left to right in the image due to sun glint.  The dashed lines show the 

strong positive slope of the spatial profiles that, in the absence of sun glint, should be 

nearly horizontal due to the homogeneity of the deep water ROI. 
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Figure 12.   Spatial profile of four VNIR bands from the test image at the deep water 
ROI pixel locations of (1-320, 3000). 

Table 1 presents the summary statistics for the four VNIR bands in Figure 12.  

Standard deviation values are large and correlation values are low illustrating sun glint 

effect on the image.  Slope values are large and positive corresponding to the strong 

positive slope lines in Figure 12.  In the absence of sun glint, the slope values should be 

close to zero.  The NIR band is less affected by sun glint compared to the VIS bands 

owing to the NIR absorptive property of water. 

Table 1.   Summary statistics of four VNIR bands from the test image at the deep water 
ROI pixel locations of (1-320, 3000). 

 

Color Peak Range Max Min Mean Median Mode Standard Deviation Slope

Blue 460 456‐464 4788 1214 1865.360 1650 1387 657.539 4.60288

Green 552 548‐555 4563 870 1544.580 1342 1004 694.227 4.80715

Red 641 637‐645 4035 323 938.588 750 621 640.973 4.47657

NIR 860 856‐865 2364 99 493.541 375 362 378.298 2.90338

Test Image

Wavelength (nm) Radiance (mW cm
‐2
sr

‐1
μm

‐1
) * 1000

Band
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The spectral plot in Figure 13 depicts spectra from pixel (1, 3000) at the far left 

end of the test image deep water ROI and pixel (320, 3000) at the far right end of the test 

image deep water ROI.  Note the large discrepancy in radiance between the two spectra 

and the correlation value of 0.86.  It is expected that, in the absence of sun glint, these 

two spectra should be closer together and have a higher correlation value because they 

are from the same deep water ROI. 

 

Figure 13.   Spectral plot of radiance by wavelength for a pixel with a low amount of sun 
glint at the deep water ROI location of (1, 3000) (red) and a pixel with a 
high amount of sun glint at the deep water ROI location of (320, 3000) 

(blue) of the test image. 

B. METHODOLOGY 

The sun glint correction methods of Hedley et al. (2005), Lyzenga et al. (2006), 

Joyce (2004), and Kuster et al. (2009) were written as algorithms within the Interactive 

Data Language (IDL) 8.0 workbench environment using ENvironment for Visualizing 

Images (ENVI) library routines (see Appendices A–D).  The IDL sun glint correction 

algorithms were applied to all 360 bands of the test image and the corrected images were 

visually compared.  The Hedley et al. (2005), Lyzenga et al. (2006), and Joyce (2004) 
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methods are fundamentally similar and can be categorized as the regression-based 

methods.  The deep water ROI and 856–865 nm NIR band were used for the regression-

based sun glint correction algorithms. 

Spatial profiles were created for the deep water ROI pixels in the sun glint 

corrected images using the four VNIR bands as shown in Figure 12.  The spatial profiles 

were visually compared to the test image and the other sun glint corrected images to 

obtain a qualitative assessment of the sun glint correction algorithms performance in the 

VNIR region.  Summary statistics of the spatial profiles for all 360 bands in each image 

were calculated.  Slope values for each image were plotted by band and compared to the 

test image slope values.  The slope plots determined which bands were under-corrected or 

over-corrected.  Slope values closer to zero performed better, while positive slope values 

represented under-correction and negative slope values represented over-correction. 

Spectral plots for the deep water ROI pixel with a low amount of sun glint at  

(1, 3000) and the deep water ROI pixel with a high amount of sun glint at (320, 3000) in 

the sun glint corrected images were created.  For each sun glint corrected image, the 

spectral plots were compared and correlation values were calculated to determine how 

well the low and high sun glint spectra matched each other after correction.  The 

corrected spectra were also compared to the original spectra and correlation values were 

calculated to evaluate how well the corrected spectra maintained spectral integrity.  

Correlation values were averaged for each sun glint correction method and the algorithm 

that resulted in the highest average correlation was designated as the best performing 

with respect to spectral fidelity. 
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IV. RESULTS AND DISCUSSION 

A. RESULTS AND DISCUSSION 

1. Visual Comparison 

Figure 14 illustrates the results of the four sun glint correction algorithms 

compared to the uncorrected test image.  The three regression-based algorithms 

performed similarly at correcting glint from the test image compared to the Kuster et al. 

algorithm.  The similar results from the regression-based methods are expected given that 

the only real difference between them is the deep water ROI NIR statistic used in the 

algorithm.  The Hedley et al. method uses the minimum deep water ROI NIR value, 

while the Lyzenga et al. method uses the mean deep water ROI NIR value and the Joyce 

method uses the modal deep water ROI NIR value.  The Kuster et al. method uses an 

entirely different algorithm based on the 760 nm oxygen absorption feature.  Some sun 

glint remains in the resulting image from the Kuster et al. algorithm.  All four of the sun 

glint correction algorithms resulted in black land pixels, essentially making these pixels 

unusable for spectral analysis. 
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  (A.)    (B.)    (C.)    (D.)    (E.) 

Figure 14.   True-color composite depictions of the hyperspectral test image (A.), and sun 
glint corrected images from the methods of Hedley et al. (B.),  Lyzenga et al. 
(C.),  Joyce (D.),  and Kuster et al. (E.).  Blue represents the (456–464 nm) 
band, green represents the (548–555 nm) band, and red represents the (637–
645 nm) band.  The red lines represent the deep water ROI pixel locations of 

(1–320, 3000). 

2. Spatial and Spectral Methods Comparison 

a. Hedley et al. 

Figure 15 provides spatial profiles of four VNIR bands from the Hedley et 

al. sun glint corrected image at the deep water ROI pixel locations of (1-320, 3000).  The 

radiance variances on the right side of the profiles are smoothed compared to the test 

image profiles in Figure 12.  The dashed lines of the RGB spatial profiles depict a weak  
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negative slope while the dashed line of the NIR spatial profile depicts a flat slope.  The 

NIR spatial profile intersects the y-axis at the minimum deep water ROI NIR value used 

in the algorithm. 

 

Figure 15.   Spatial profile of four VNIR bands from the Hedley et al. sun glint corrected 
image at the deep water ROI pixel locations of (1-320, 3000). 

Table 2 details the summary statistics for the four VNIR bands in 

Figure 15.  The shaded cell represents the deep water ROI NIR value used in the Hedley 

et al. sun glint correction algorithm.  Standard deviation values are smaller and slope 

values are closer to zero than the test image statistics in Table 1.  The slope values for the 

VIS bands are negative depicting that the algorithm over-corrected for sun glint in these 

bands.  The zero values for standard deviation and slope in the NIR band exemplifies that 

the NIR band used in the algorithm was applied to itself setting the profile to the 

minimum deep water ROI radiance value of this band. 
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Table 2.   Summary statistics of four VNIR bands from the Hedley et al. sun glint 
corrected image at the deep water ROI pixel locations of (1-320, 3000).  The 
highlighted cell depicts the minimum NIR value used in the Hedley et al. sun 

glint correction algorithm. 

 

Figure 16 characterizes the slope values plotted by wavelength for all 

bands of the uncorrected test image and the Hedley et al. sun glint corrected image.  The 

negative corrected slope values show that the Hedley et al. sun glint correction algorithm 

over-corrected for sun glint in most of the VNIR bands. 

 

Figure 16.   Plot of slope by wavelength for the uncorrected test image (red) and the 
Hedley et al. sun glint corrected image (blue). 

Figure 17 presents spectra from a deep water ROI pixel with a low amount 

of sun glint at (1, 3000) and a deep water ROI pixel with a high amount of sun glint at 

Color Peak Range Max Min Mean Median Mode Standard Deviation Slope

Blue 460 456‐464 2085 536 1205.550 1189 1172 179.251 ‐0.253

Green 552 548‐555 1709 323 846.097 824 835 182.857 ‐0.333

Red 641 637‐645 852 0 287.853 282 286 135.679 ‐0.308

NIR 860 856‐865 99 99 99.000 99 99 0.000 0.000

Band Hedley et al. Sun Glint Corrected Image

Wavelength (nm) Radiance (mW cm
‐2
sr

‐1
μm

‐1
) * 1000
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(320, 3000) for the Hedley et al. sun glint corrected image.  The algorithm over-corrected 

the radiance of the pixel with the high amount of sun glint to less than the pixel with the 

low amount of sun glint in the VNIR bands. 

 

Figure 17.   Spectral plot of radiance by wavelength for a pixel with a low amount of sun 
glint at the deep water ROI location of (1, 3000) (red) and a pixel with a high 
amount of sun glint at the deep water ROI location of (320, 3000) (blue) of 

the Hedley et al. sun glint corrected image. 

Figure 18 depicts spectra from a pixel with a low amount of sun glint from 

the deep water ROI pixel at (1, 3000) of the uncorrected test image and the same pixel in 

the Hedley et al. sun glint corrected image.  The algorithm did not significantly alter the 

spectrum of the pixel from the test image as represented by the high correlation value. 
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Figure 18.   Spectral plot of radiance by wavelength for a pixel with a low amount of sun 
glint at the deep water ROI location of (1, 3000) (red) of the test image and a 

pixel with a low amount of sun glint at the deep water ROI location of (1, 
3000) (blue) of the Hedley et al. sun glint corrected image. 

Figure 19 shows spectra from a pixel with a high amount of sun glint from 

the deep water ROI pixel at (320, 3000) of the test image and the same pixel in the 

Hedley et al. sun glint corrected image.  The algorithm vastly altered the spectrum shape 

of the pixel in the VNIR bands making the spectrum unrecognizable from the original 

spectrum as represented with the low correlation value.  Many of the VNIR spectral 

features in the original spectrum were lost and the 760 nm oxygen absorption feature was 

inverted into a slight peak in the corrected spectrum.  Spectral features in the SWIR 

region beginning at the water absorption feature at 900 nm in the corrected spectrum are 

consistent with the original spectrum. 
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Figure 19.   Spectral plot of radiance by wavelength for a pixel with a high amount of 
sun glint at the deep water ROI location of (320, 3000) (red) of the test image 
and a pixel with a high amount of sun glint at the deep water ROI location of 

(320, 3000) (blue) of the Hedley et al. sun glint corrected image. 

b. Lyzenga et al. 

Figure 20 displays spatial profiles of four VNIR bands from the Lyzenga 

et al. sun glint corrected image for deep water ROI pixel locations of (1-320, 3000).  The 

radiance variances on the right side of the profiles are smoother compared to the test 

image profiles in Figure 12.  The dashed lines of the RGB profiles show a weak negative 

slope and the dashed line of the NIR profile shows a flat slope.  The NIR profile 

intersects the y-axis at the mean deep water ROI NIR value used in the algorithm. 



 40

 

Figure 20.   Spatial profile of four VNIR bands from the Lyzenga et al. sun glint corrected 
image at the deep water ROI pixel locations of (1-320, 3000). 

Table 3 provides summary statistics for the four VNIR bands in Figure 20.  

The shaded cell represents the deep water ROI NIR value used in the Lyzenga et al. sun 

glint correction algorithm.  Standard deviation values are smaller and slope values are 

closer to zero than the uncorrected test image statistics in Table 1.  The slope values for 

the VIS bands are negative exemplifying that the algorithm over-corrected for sun glint in 

these bands.  The NIR band used in the algorithm was applied to itself setting the spatial 

profile to the mean deep water ROI radiance value of this band, as depicted by the zero 

values for standard deviation and slope. 
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Table 3.   Summary statistics of four VNIR bands from the Lyzenga et al. sun glint 
corrected image at the deep water ROI pixel locations of (1-320, 3000).  The 
highlighted cell depicts the mean NIR value used in the Lyzenga et al. sun 

glint correction algorithm. 

 

 

Figure 21 portrays slope values plotted by wavelength for all bands of the 

uncorrected test image and the Lyzenga et al. sun glint corrected image.  The negative 

corrected slope values show that the Lyzenga et al. sun glint correction algorithm over-

corrected for sun glint in most of the VNIR bands. 

 

Figure 21.   Plot of slope by wavelength for the test image (red) and the Lyzenga et al. 
sun glint corrected image (blue). 

Figure 22 depicts spectra from a deep water ROI pixel at (1, 3000) with a 

low amount of sun glint and a deep water ROI pixel at (320, 3000) with a high amount of 

Color Peak Range Max Min Mean Median Mode Standard Deviation Slope

Blue 460 456‐464 2744 1196 1865.340 1849 1832 179.228 ‐0.253

Green 552 548‐555 2407 1022 1544.550 1522 1520 182.831 ‐0.333

Red 641 637‐645 1504 404 938.572 934 939 140.055 ‐0.324

NIR 860 856‐865 494 494 494.000 494 494 0.000 0.000

Band Lyzenga et al. Sun Glint Corrected Image

Wavelength (nm) Radiance (mW cm
‐2
sr

‐1
μm

‐1
) * 1000
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sun glint from the Lyzenga et al. sun glint corrected image.  The algorithm provided a 

more correlated match between spectra compared to all other algorithms tested. 

 

Figure 22.   Spectral plot of radiance by wavelength for a deep water ROI pixel at (1, 
3000) with a low amount of glint and a deep water ROI pixel at (320, 3000) 

with a high amount of glint from the Lyzenga et al. sun glint corrected 
image. 

Figure 23 displays spectra from a deep water ROI pixel at (1, 3000) with a 

low amount of sun glint from the uncorrected test image and the same pixel in the 

Lyzenga et al. sun glint corrected image.  The Lyzenga et al. sun glint correction 

algorithm altered the spectrum of the pixel by increasing the overall radiance of the 

spectrum from that of the test image spectrum.  However, the shape of the spectrum and 

its spectral features were maintained from the uncorrected test image spectrum. 
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Figure 23.   Spectral plot of radiance by wavelength for a pixel with a low amount of sun 
glint at the deep water ROI location of (1, 3000) (red) of the test image and a 

pixel with a low amount of sun glint at the deep water ROI location of (1, 
3000) (blue) of the Lyzenga et al. sun glint corrected image. 

Figure 24 depicts spectra from a deep water ROI pixel at (320, 3000) with 

a high amount of sun glint from the uncorrected test image and the same pixel in the 

Lyzenga et al. sun glint corrected image.  The Lyzenga et al. sun glint correction 

algorithm increased the overall radiance of spectrum compared to the original image 

spectrum.  However, the shape of the spectrum and its spectral features were maintained 

from the original image spectrum. 
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Figure 24.   Spectral plot of radiance by wavelength for a pixel with a high amount of 
sun glint at the deep water ROI location of (320, 3000) (red) of the test image 
and a pixel with a high amount of sun glint at the deep water ROI location of 

(320, 3000) (blue) of the Lyzenga et al. sun glint corrected image. 

c. Joyce 

Figure 25 provides spatial profiles of four VNIR bands from the Joyce sun 

glint corrected image for deep water ROI pixel locations of (1-320, 3000).   The radiance 

variances on the right side of the profiles are smoothed compared to the test image 

profiles in Figure 12.  The dashed lines of the RGB profiles have a weak negative slope 

while the dashed line of the NIR profile has a flat slope.  The NIR profile intersects the 

y-axis at the modal deep water ROI NIR value used in the algorithm. 
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Figure 25.   Spatial profile of four VNIR bands from the Joyce sun glint corrected 
image at the deep water ROI pixel locations of (1-320, 3000). 

Table 4 provides summary statistics of the four VNIR bands in Figure 25.  

The shaded cell represents the deep water ROI NIR value used in the Joyce sun glint 

correction algorithm.  Standard deviation values are smaller and slope values are closer to 

zero than the uncorrected test image statistics in Table 1.  The slope values for the VIS 

bands are negative showing that the algorithm over-corrected for sun glint in these bands.  

The zero values for standard deviation and slope in the NIR band exemplifies that the 

NIR band used in the algorithm was applied to itself setting the spatial profile to the 

modal deep water ROI radiance value of this band. 
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Table 4.   Summary statistics of four VNIR bands from the Joyce sun glint corrected 
image at the deep water ROI pixel locations of (1-320, 3000).  The 

highlighted cell depicts the modal NIR value used in the Joyce sun glint 
correction algorithm. 

 

 

Slope values are plotted by wavelength for all bands of the test image and 

the Joyce sun glint corrected image in Figure 26.  The negative corrected slope values 

explain that the Joyce sun glint correction algorithm over-corrected for sun glint in most 

of the VNIR bands. 

 

Figure 26.   Plot of slope by wavelength for the uncorrected test image (red) and the Joyce 
sun glint corrected image (blue). 

Color Peak Range Max Min Mean Median Mode Standard Deviation Slope

Blue 460 456‐464 2524 976 1645.370 1629 1612 179.223 ‐0.253

Green 552 548‐555 2174 789 1311.700 1289 1287 182.823 ‐0.333

Red 641 637‐645 1504 404 938.572 934 939 140.055 ‐0.324

NIR 860 856‐865 362 362 362.000 362 362 0.000 0.000

Band Joyce Sun Glint Corrected Image

Wavelength (nm) Radiance (mW cm
‐2
sr

‐1
μm

‐1
) * 1000



 47

The spectra from a deep water ROI pixel at (1, 3000) with a low amount 

of sun glint and a deep water ROI pixel at (320, 3000) with a high amount of sun glint 

from the Joyce sun glint corrected image are depicted in Figure 27.  The algorithm 

provided a good correlated match between spectra. 

 

Figure 27.   Spectral plot of radiance by wavelength for a pixel with less sun glint at the 
deep water ROI location of (1, 3000) (red) and a pixel with more sun glint at 

the deep water ROI location of (320, 3000) (blue) of the Joyce sun glint 
corrected image. 

Spectra from a deep water ROI pixel at (1, 3000) with a low amount of 

sun glint from the uncorrected test image and the same pixel in the Joyce sun glint 

corrected image are provided in Figure 28.  The Joyce sun glint correction algorithm 

altered the spectrum of the pixel by increasing the overall radiance of the spectrum from 

that of the uncorrected test image spectrum.  However, the shape of the spectrum and its 

spectral features were maintained from the test image spectrum. 
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Figure 28.   Spectral plot of radiance by wavelength for a pixel with a low amount of sun 
glint at the deep water ROI location of (1, 3000) (red) of the test image and a 

pixel with a low amount of sun glint at the deep water ROI location of (1, 
3000) (blue) of the Joyce sun glint corrected image. 

Spectra from a deep water ROI pixel at (320, 3000) with a high amount of 

sun glint from the test image is plotted with the same pixel in the Joyce sun glint 

corrected image in Figure 29.  The Joyce sun glint correction algorithm reduced the 

overall radiance of spectrum compared to the original image spectrum.  However, the 

shape of the spectrum and most of its spectral features were maintained from the original 

image spectrum. 
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Figure 29.   Spectral plot of radiance by wavelength for a pixel with a high amount of 
sun glint at the deep water ROI location of (320, 3000) (red) of the test image 
and a pixel with a high amount of sun glint at the deep water ROI location of 

(320, 3000) (blue) of the Joyce sun glint corrected image. 

d. Kuster et al. 

Spatial profiles of four VNIR bands from the Kuster et al. sun glint 

corrected image for the deep water ROI pixel locations of (1-320, 3000) are provided in 

Figure 30.  The radiance variances on the right side of the spatial profiles are smooth 

when compared to the test image profiles in Figure 12, but not as smooth as the 

regression-based spatial profiles.  The dashed lines of the VNIR profiles show a weak 

positive slope. 
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Figure 30.   Spatial profile of four VNIR bands from the Kuster et al. sun glint corrected 
image at the deep water ROI pixel locations of (1-320, 3000). 

Summary statistics of the VNIR bands shown in Figure 30 are provided in 

Table 5.  Standard deviation values are smaller and slope values are closer to zero than 

the uncorrected test image statistics in Table 1, although they are not as small or as close 

to zero than the regression-based algorithms.  The slope values for the VNIR bands are 

positive depicting that the algorithm under-corrected for sun glint in these bands. 

Table 5.   Summary statistics of four VNIR bands from the Kuster et al. sun glint 
corrected image at the deep water ROI pixel locations of (1-320, 3000). 

 

 

Color Peak Range Max Min Mean Median Mode Standard Deviation Slope

Blue 460 456‐464 2035 956 1267.350 1192 1116 208.351 1.147

Green 552 548‐555 1569 521 847.903 801 706 177.372 0.781

Red 641 637‐645 728 0 234.809 206 203 110.646 0.410

NIR 860 856‐865 306 0 61.778 43 0 62.218 0.397

Band Kuster et al. Sun Glint Corrected Image

Wavelength (nm) Radiance (mW cm
‐2
sr

‐1
μm

‐1
) * 1000
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Figure 31 illustrates slope values plotted by wavelength for all bands of 

the uncorrected test image and the Kuster et al. sun glint corrected image.  The slope 

values for the Kuster et al. sun glint corrected image are positive exemplifying that the 

algorithm did not over-corrected for sun glint in any of the bands. 

 

Figure 31.   Plot of slope by wavelength for the test image (red) and the Kuster et al. sun 
glint corrected image (blue). 

Spectra from a deep water ROI pixel at (1, 3000) with a low amount of 

sun glint and a deep water ROI pixel at (320, 3000) with a high amount of sun glint from 

the Kuster et al. sun glint corrected image are depicted in Figure 32.  This algorithm 

performed the best at matching the overall radiance between the two spectra in the VIS 

bands.  However, there is a larger difference between radiance levels between the two 

spectra in the NIR and SWIR regions compared to the regression-based algorithms. 

 



 52

 

Figure 32.   Spectral plot of radiance by wavelength for a pixel with less sun glint at the 
deep water ROI location of (1, 3000) (red) and a pixel with more sun glint at 

the deep water ROI location of (320, 3000) (blue) of the Kuster et al. sun glint 
corrected image. 

Figure 33 provides spectra from a deep water ROI pixel at (1, 3000) with a 

low amount of sun glint from the test image and the same pixel in the Kuster et al. sun 

glint corrected image.  The Kuster et al. sun glint correction algorithm slightly altered the 

spectrum of the pixel in the VIS and SWIR bands.  However, the shapes of the spectra 

differ in the NIR region with the corrected spectra losing the 760 nm oxygen absorption 

feature. 
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Figure 33.   Spectral plot of radiance by wavelength for a pixel with a low amount of sun 
glint at the deep water ROI location of (1, 3000) (red) of the test image and 
a pixel with a low amount of sun glint at the deep water ROI location of (1, 

3000) (blue) of the Kuster et al. sun glint corrected image. 

Figure 34 shows spectra from a deep water ROI pixel at (320, 3000) with 

a high amount of sun glint from the test image and the same pixel in the Kuster et al. sun 

glint corrected image.  The Kuster et al. sun glint correction algorithm reduced the overall 

radiance of the spectrum compared to the original image spectrum.  However, some of 

the spectral features were lost in the corrected spectrum including the 760 nm oxygen 

absorption feature. 

 



 54

 

Figure 34.   Spectral plot of radiance by wavelength for a pixel with a high amount of sun 
glint at the deep water ROI location of (320, 3000) (red) of the test image and 

a pixel with a high amount of sun glint at the deep water ROI location of 
(320, 3000) (blue) of the Kuster et al. sun glint corrected image. 

The results of the various spectral comparisons of the sun glint correction 

methods are provided in Table 6.  The averaged correlation values for the spectral 

comparison tests resulted in the Lyzenga et al. sun glint correction algorithm 

outperforming the rest of the algorithms.  The Joyce algorithm is in close second place 

behind the Lyzenga et al. algorithm.  The Kuster et al. and the Hedley et al. algorithms 

are a distant third and fourth place, respectively. 
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Table 6.   Spectral comparison results of the tested sun glint correction algorithms.  The 
grey highlighted cells depict the highest correlation values and the yellow 
highlighted cells depict the lowest correlation values for each comparison. 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The regression-based methods over-corrected for sun glint in the VNIR bands, 

although they outperformed the Kuster et al. algorithm.  Visually, the Kuster et al. 

algorithm left the highest amount of glint in the image compared to the regression-based 

methods.  If the tests in this thesis were strictly a MSI exercise, any one of the regression-

based algorithms would be a good candidate for use due to their similar performance.  

They differ in their ability to maintain spectral integrity.  The Hedley et al. algorithm did 

not alter the spectrum of the deep water ROI pixel at (1, 3000) with a low amount of 

glint.  However, it drastically altered the pixel with a high amount of glint at the deep 

water ROI location of (320, 3000).  The Lyzenga et al. algorithm changed the spectrum 

of the deep water ROI pixel at (1, 3000) more so than all other tested algorithms.  It 

performed the best, however, at maintaining the spectral features of the corrected 

spectrum for the pixel with a high amount of glint.  The Joyce algorithm consistently 

performed well and maintained the spectral integrity of the corrected spectra. 

Based on the testing provided in this thesis, the Lyzenga et al. sun glint correction 

algorithm received the highest average correlation value of 0.977 and is recommended 

for correction of sun glint in hyperspectral imagery when spectral integrity of the 

corrected image is required. 

B. FUTURE WORK 

The sun glint correction algorithms tested in this thesis may not perform similarly 

for all images and all situations.  The tested algorithms may not perform well on wave-

induced sun and sky glint.  The development of new methods to reduce ocean surface 

clutter may perform better in these situations.  One such development involves using 

wave gravity energy in the frequency domain to reduce ocean surface clutter (R. Abileah 

and Z. Bergen, personal communication, April 18, 2012).  This new method shows 

promise, but more research needs to be conducted to determine its utility to HSI 

applications. 
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APPENDIX A. HEDLEY ET AL. SUN GLINT CORRECTION 
ALGORITHM 

; docformat = 'rst' 
;+ 
; NAME: 
; hedley.pro 
; 
; PURPOSE: 
; This procedure performs the sun glint correction method 
; from Hedley et al. (2005) on a hyperspectral image. 
; 
; INPUTS: 
; Hyperspectral image with the NIR band used in the 
; correction in the 100th index.  If the 100th index band 
; is not desired, change the NIRIndex variable to the 
; desired NIR band index.  ENVI ROI file of deep water 
; pixels. 
; 
; OUTPUTS: 
; Hyperspectral image with sun glint corrected.  The  
; output will be in BIL format with 16-bit unsigned 
; integer pixel values. 
; 
; SIDE EFFECTS: 
; The NIR band used for the sun glint correction will be  
; unusable in the output image. 
; 
; MODIFICATION HISTORY: 
;   Written by: Chad Miller, Research Assistant, Remote 
;   Sensing Center, Naval Postgraduate School, 8/4/2012. 
;   Modified from code written by Zachary Bergen, Goodrich 
;   Corporation, 4/1/2012 
;- 
pro hedley 
  compile_opt idl2 
 
  ;Begin ENVI batch mode 
  envi, /restore_base_save_files 
  envi_batch_init 
   
  ;User defined input image 
  filename = $ 
  dialog_pickfile(/read, title = 'Select an image file for input') 
   
  ;Open image with ENVI library routines 
  envi_open_file, filename, r_fid = fid 
  ;Read ENVI header and set variables 
  envi_file_query, $ 
    fid, dims = dims, nb = nb, nl = nl, ns = ns 
  ;Create index array where size is equal to number of 
  ;bands in image 
  pos = indgen(nb) 



 60

   
  ;Index value of the NIR band used in sun glint correction. 
  ;Change this to desired NIR band index 
  NIRIndex = 100 
   
  ;Initialize data input variable 
  data = uintarr(ns, nb, nl) 
  ;Read input image into variable 
  for band1 = 0, nb - 1 do begin 
    data[*, band1, *] = $ 
      envi_get_data(fid = fid, pos = band1, dims = dims) 
  endfor 
   
  ;User defined ROI file 
  ROIFile = $ 
  dialog_pickfile(/read, title = 'Select ROI File of Glint Pixels') 
  ;Read ROI file using ENVI library routines 
  envi_restore_rois, ROIFile 
  roi_id = $ 
  envi_get_roi_ids(roi_names = roi_names, roi_colors = roi_colors) 
  ;Apply ROI to input image variable and create ROI data variable 
  dataROI = envi_get_roi_data(roi_id[0], fid = fid, pos = pos) 
   
  ;Create vector of NIR band ROI pixels 
  nirLinear = reform(dataROI[NIRIndex, *]) 
  ;Find the minimum NIR ROI value and put into variable 
  minNIR = min(nirLinear) 
   
  ;Initialize slope vector 
  slopeVec = fltarr(nb) 
  ;For all bands 
  for band2 = 0, nb - 1 do begin 
    ;Create ROI vector of band 
    linear = reform(dataROI[band2, *]) 
    ;Find slope of regression line using the NIR ROI vector 
    ;to ROI vector of band 
    res = regress(nirLinear, linear) 
    ;Populate slope vector 
    slopeVec[band2] = res 
  endfor 
   
  ;Initialize sun glint corrected image as 16-bit BIL file 
  deGlintImage = uintarr(ns, nb, nl) 
  ;For every pixel and for every band perform sun glint correction 
  ;algorithm 
  for line = 0, nl - 1 do begin 
    for samp = 0, ns - 1 do begin 
      for band3 = 0, nb - 1 do begin 
        ;Subtract the product of the slope vector and  the NIR minus 
   ;the minimum NIR value from the input image 
        result = data[samp, band3, line] - slopeVec[band3] * $ 
          (data[samp, NIRIndex, line] - minNIR) 
        ;Set negative values to zero 
        if (result lt 0) then result = 0 
        ;Round floating point values to integers 
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        round_result = round(result) 
        ;Populate sun glint corrected image 
        deGlintImage[samp, band3, line] = round_result 
      endfor 
    endfor 
  endfor 
  
  ;User defined output file 
  outfile = $ 
  dialog_pickfile(/write, title = 'Enter the output filename ') 
  ;Write sun glint corrected image to file 
  openw, lun, outfile, /get_lun 
  writeu, lun, deGlintImage 
  free_lun, lun 
 
end 
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APPENDIX B. LYZENGA ET AL. SUN GLINT CORRECTION 
ALGORITHM 

; docformat = 'rst' 
;+ 
; NAME: 
; lyzenga.pro 
; 
; PURPOSE: 
; This procedure performs the sun glint correction method from 
; Lyzenga et al. (2006) on a hyperspectral image. 
; 
; INPUTS: 
; Hyperspectral image with the NIR band used in the correction 
; in the 100th index.  If the 100th index band is not desired, 
; change the NIRIndex variable to the desired NIR band index. 
; ENVI ROI file of deep water pixels. 
; 
; OUTPUTS: 
; Hyperspectral image with sun glint corrected.  The output will be 
; in BIL format with 16-bit unsigned integer pixel values. 
; 
; SIDE EFFECTS: 
; The NIR band used for the sun glint correction will be unusable 
; in the output image. 
; 
; MODIFICATION HISTORY: 
;   Written by: Chad Miller, Research Assistant, Remote Sensing 
;   Center, Naval Postgraduate School, 8/4/2012. 
;- 
pro lyzenga 
  compile_opt idl2 
   
  ;Begin ENVI batch mode 
  envi, /restore_base_save_files 
  envi_batch_init 
   
  ;User defined input image 
  filename = $ 
  dialog_pickfile(/read, title = 'Select an image file for input') 
   
  ;Open image with ENVI library routines 
  envi_open_file, filename, r_fid = fid 
  ;Read ENVI header and set variables 
  envi_file_query, fid, dims = dims, nb = nb, nl = nl, ns = ns 
  ;Create index array where size is equal to number of bands 
  ;in image 
  pos = lindgen(nb) 
   
  ;Index value of the NIR band used in sun glint correction. 
  ;Change this to desired NIR band index   
  NIRIndex = 100 
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  ;Initialize data input variable 
  data = uintarr(ns, nb, nl) 
  ;Read input image into variable 
  for band = 0, nb - 1 do begin 
    data[*, band, *] = $ 
      envi_get_data(fid = fid, pos = band, dims = dims) 
  endfor 
   
  ;User defined ROI file 
  ROIFile = $ 
  dialog_pickfile(/read, title = 'Select ROI File of Glint Pixels') 
  ;Read ROI file using ENVI library routines 
  envi_restore_rois, ROIFile 
  roi_id = $ 
  envi_get_roi_ids(roi_names = roi_names, roi_colors = roi_colors) 
  ;Apply ROI to input image variable and create ROI data variable 
  dataROI = envi_get_roi_data(roi_id[0], fid = fid, pos = pos) 
   
  ;Create vector of NIR band ROI pixels 
  nirLinear = reform(dataROI[NIRIndex,*]) 
  ;Find the mean NIR ROI value and put into variable 
  meanNIR = mean(nirLinear) 
  ;Find variance of NIR ROI pixels and put into variable 
  varNir = variance(nirLinear) 
 
  ;Initialize the coefficient vector 
  coeffVec = fltarr(nb)   
  ;For every band 
  for index2 = 0, nb - 1 do begin 
    ;Create ROI vector of band 
    linear = reform(dataROI[index2,*]) 
    ;Find the covariance of the band's ROI vector to the 
    ;NIR ROI vector 
    cov = correlate(linear, nirLinear, /covariance) 
    ;Divide the covariance by the NIR ROI variance 
    coeff = cov / varNIR 
    ;Populate the coefficient vector 
    coeffVec[index2] = coeff 
  endfor 
   
  ;Initialize sun glint corrected image as 16-bit BIL file 
  deGlintImage = uintarr(ns, nb, nl) 
  ;For every pixel and for every band perform sun glint 
  ;correction algorithm 
  for line = 0, nl - 1 do begin 
    for samp = 0, ns - 1 do begin 
      for band2 = 0, nb - 1 do begin 
        ;Subtract the product of the slope vector and  the NIR minus 
   ;the mean NIR value from the input image 
        result = data[samp, band2, line] - coeffVec[band2] * $ 
          (data[samp, NIRIndex, line] - meanNIR) 
        ;Set negative values to zero 
        if (result lt 0) then result = 0 
        ;Round floating point values to integers 
        round_result = round(result) 
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        ;Populate sun glint corrected image 
        deGlintImage[samp, band2, line] = round_result         
      endfor 
    endfor 
  endfor 
   
  ;User defined output file 
  outfile = $ 
  dialog_pickfile(/write, title = 'Enter the output filename ') 
  ;Write sun glint corrected image to file 
  openw, lun, outfile, /get_lun 
  writeu, lun, deGlintImage 
  free_lun, lun 
 
end 
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APPENDIX C. JOYCE SUN GLINT CORRECTION ALGORITHM 

; docformat = 'rst' 
;+ 
; NAME: 
; joyce.pro 
; 
; PURPOSE: 
; This procedure performs the sun glint correction method from 
; Joyce (2004) on a hyperspectral image.  Same algorithm as 
; Hedley et al. (2005) except uses mode NIR value 
; instead of minimum 
; 
; INPUTS: 
; Hyperspectral image with the NIR band used in the correction 
; in the 100th index.  If the 100th index band is not desired, 
; change the NIRIndex variable to the desired NIR band index. 
; ENVI ROI file of deep water pixels. 
; 
; OUTPUTS: 
; Hyperspectral image with sun glint corrected.  The output will be 
; in BIL format with 16-bit unsigned integer pixel values. 
; 
; SIDE EFFECTS: 
; The NIR band used for the sun glint correction will be unusable 
; in the output image. 
; 
; MODIFICATION HISTORY: 
;   Written by: Chad Miller, Research Assistant, Remote Sensing 
;   Center, Naval Postgraduate School, 8/4/2012. 
;- 
pro joyce 
  compile_opt idl2 
 
  ;Begin ENVI batch mode 
  envi, /restore_base_save_files 
  envi_batch_init 
   
  ;User defined input image 
  filename = $ 
  dialog_pickfile(/read, title = 'Select an image file for input') 
   
  ;Open image with ENVI library routines 
  envi_open_file, filename, r_fid = fid 
  ;Read ENVI header and set variables 
  envi_file_query, fid, dims = dims, nb = nb, nl = nl, ns = ns 
  ;Create index array where size is equal to number of bands 
  ;in image 
  pos = indgen(nb) 
   
  ;Index value of the NIR band used in sun glint correction. 
  ;Change this to desired NIR band index   
  NIRIndex = 100 
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  ;Initialize data input variable 
  data = uintarr(ns, nb, nl) 
  ;Read input image into variable 
  for band1 = 0, nb - 1 do begin 
    data[*, band1, *] = $ 
      envi_get_data(fid = fid, pos = band1, dims = dims) 
  endfor 
   
  ;User defined ROI file 
  ROIFile = $ 
  dialog_pickfile(/read, title = 'Select ROI File of Glint Pixels') 
  ;Read ROI file using ENVI library routines 
  envi_restore_rois, ROIFile 
  roi_id = $ 
  envi_get_roi_ids(roi_names = roi_names, roi_colors = roi_colors) 
  ;Apply ROI to input image variable and create ROI data variable 
  dataROI = envi_get_roi_data(roi_id[0], fid = fid, pos = pos) 
   
  ;Create vector of NIR band ROI pixels 
  nirLinear = reform(dataROI[NIRIndex, *]) 
  ;Copy vector into sort vector 
  nirLinear_sort = nirLinear 
   
  ;Find the mode NIR ROI value and put into variable 
  nirLinear_sort = nirLinear_sort[bsort(nirLinear_sort)] 
  wh = where(nirLinear_sort ne shift(nirLinear_sort, -1), cnt) 
  if cnt eq 0 then modeNIR = nirLinear_sort[0] else begin 
    void = max(wh - [-1, wh], mxpos)  
    modeNIR = long(nirLinear_sort[wh[mxpos]]) 
  endelse 
   
  ;Initialize slope vector 
  slopeVec = fltarr(nb) 
  ;For all bands 
  for band2 = 0, nb - 1 do begin 
    ;Create ROI vector of band 
    linear = reform(dataROI[band2, *]) 
    ;Find slope of regression line using the NIR ROI vector 
    ;to ROI vector of band 
    res = regress(nirLinear, linear) 
    ;Populate slope vector 
    slopeVec[band2] = res 
  endfor 
   
  ;Initialize sun glint corrected image as 16-bit BIL file 
  deGlintImage = uintarr(ns, nb, nl) 
  ;For every pixel and for every band perform sun glint correction 
  ;algorithm 
  for line = 0, nl - 1 do begin 
    for samp = 0, ns - 1 do begin 
      for band3 = 0, nb - 1 do begin 
        ;Subtract the product of the slope vector and  the NIR minus 
   ;the modal NIR value from the input image 
        result = data[samp, band3, line] - slopeVec[band3] * $ 
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          (data[samp, NIRIndex, line] - modeNIR) 
        ;Set negative values to zero 
        if (result lt 0) then result = 0 
        ;Round floating point values to integers 
        round_result = round(result) 
        ;Populate sun glint corrected image 
        deGlintImage[samp, band3, line] = round_result 
      endfor 
    endfor 
  endfor 
  
  ;User defined output file 
  outfile = $ 
  dialog_pickfile(/write, title = 'Enter the output filename ') 
  ;Write sun glint corrected image to file 
  openw, lun, outfile, /get_lun 
  writeu, lun, deGlintImage 
  free_lun, lun 
 
end 
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APPENDIX D. KUSTER ET AL. SUN GLINT CORRECTION 
ALGORITHM 

; docformat = 'rst' 
;+ 
; NAME: 
; kuster.pro 
; 
; PURPOSE: 
; This procedure performs the sun glint correction method from 
; Kuster et al. (2009) on a hyperspectral image. 
; 
; INPUTS: 
; Hyperspectral image and index values for the 750, 760, 
; and 775 nm bands.  Change the index values to those specified 
; for the desired input image.  ENVI ROI file of deep water pixels. 
; 
; OUTPUTS: 
; Hyperspectral image with sun glint corrected.  The output will be 
; in BIL format with 16-bit unsigned integer pixel values. 
; 
; MODIFICATION HISTORY: 
;   Written by: Chad Miller, Research Assistant, Remote Sensing 
;   Center, Naval Postgraduate School, 8/4/2012. 
;- 
pro kuster 
  compile_opt idl2 
   
  ;Begin ENVI batch mode 
  envi, /restore_base_save_files 
  envi_batch_init 
   
  ;User defined input image 
  filename = $ 
  dialog_pickfile(/read, title = 'Select an image file for input') 
   
  ;Open image with ENVI library routines 
  envi_open_file, filename, r_fid = fid 
  ;Read ENVI header and set variables 
  envi_file_query, fid, dims = dims, nb = nb, nl = nl, ns = ns 
  ;Create index array where size is equal to number of bands in 
  ;image 
  pos = lindgen(nb) 
   
  ;Change these values for other data sets 
  ;Set the index value of the 750 nm band 
  Index750 = 77 
  ;Set the index value of the 760 nm band 
  Index760 = 79 
  ;Set the index value of the 775 nm band 
  Index775 = 82 
   
  ;Initialize data input variable 
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  data = uintarr(ns, nb, nl) 
  ;Read input image into variable 
  for band = 0, nb - 1 do begin 
    data[*, band, *] = $ 
      envi_get_data(fid = fid, pos = band, dims = dims) 
  endfor 
   
  ;User defined ROI file 
  ROIFile = $ 
  dialog_pickfile(/read,title = 'Select ROI File of Glint Pixels') 
  ;Read ROI file using ENVI library routines 
  envi_restore_rois, ROIFile 
  roi_id = $ 
  envi_get_roi_ids(roi_names = roi_names, roi_colors = roi_colors) 
  ;Apply ROI to input image variable and create ROI data variable 
  dataROI = $ 
  envi_get_roi_data(roi_id[0], fid = fid, pos = pos, addr = addr) 
   
  ;Find the size of the input image ROI 
  ROI_pts = size(dataROI) 
  ;Find the total number of pixels in on band of input image ROI 
  ROI_vec = ROI_pts[2] 
  ;Calculate the x coordinates of input image ROI 
  dataROI_samp = (addr mod ns) 
  ;Calculate the y coordinates of input image ROI 
  dataROI_line = (addr / ns) 
   
  ;Initialize depth image 
  d_image = fltarr(ns, 1, nl) 
  ;For every spectrum of input image 
  for samp = 0, ns - 1 do begin 
    for line = 0, nl - 1 do begin 
      ;Calculate 760 nm oxygen absorption depth 
      d_image[samp, 0, line] = ((data[samp, Index750, line] + $ 
      data[samp, Index775, line]) / 2) - data[samp, Index760, line] 
      ;Set negative values to zero 
      if (d_image[samp, 0, line] < 0.0) then $ 
        d_image[samp, 0, line] = 0.0 
    endfor 
  endfor 
   
  ;Initialize ROI vector of depth image 
  d_imageROI = uintarr(ROI_vec) 
  ;Apply ROI to depth image 
  for i = 0, ROI_vec - 1 do begin 
    a = d_image[dataROI_samp[i], *, dataROI_line[i]] 
    d_imageROI[i] = a 
  endfor 
   
  ;Find min/max of depth image ROI including indices 
  d_max = $ 
  max(d_imageROI, d_max_i, min = d_min, subscript_min = d_min_i) 
   
  ;Initialize the glint spectral variation spectrum 
  g = fltarr(1, nb, 1) 
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  ;Create the glint spectral variation spectrum by subtracting the 
  ;minimum ROI depth from the maximum ROI depth for every band of 
  ;the input image 
  g[*, *, *] = $ 
  data[dataROI_samp[d_max_i], *, dataROI_line[d_max_i]] - $ 
  data[dataROI_samp[d_min_i], *, dataROI_line[d_min_i]] 
   
  ;Initialize the normalized depth image 
  d_norm = fltarr(ns, 1, nl) 
  ;For every pixel normalize the depth image 
  for samp = 0, ns - 1 do begin 
    for line = 0, nl - 1 do begin 
      ;Normalize every pixel by dividing by the maximum ROI depth 
      d_norm[samp, 0, line] = d_image[samp, 0, line] / d_max 
    endfor 
  endfor 
   
  ;Initialize sun glint corrected image as 16-bit BIL file 
  deGlintImage = uintarr(ns, nb, nl) 
  ;For every pixel and for every band perform sun glint correction 
  ;algorithm 
  for samp2 = 0, ns - 1 do begin 
    for line2 = 0, nl - 1 do begin 
      for band3 = 0, nb - 1 do begin 
        ;Subtract the product of the depth normalized image and 
        ;glint spectral variation spectrum from the input image 
        result = data[samp2, band3, line2] - $ 
          (g[*, band3, *] * d_norm[samp2, *, line2]) 
        ;Set negative values to zero 
        if (result lt 0) then result = 0 
        ;Round floating point values to integers 
        round_result = round(result) 
        ;Populate sun glint corrected image 
        deGlintImage[samp2, band3, line2] = round_result 
      endfor 
    endfor 
  endfor 
   
  ;User defined output file 
  outfile = $ 
  dialog_pickfile(/write, title='Enter the output filename ') 
  ;Write sun glint corrected image to file 
  openw, lun, outfile, /get_lun 
  writeu, lun, deGlintImage 
  free_lun, lun 
 
end 
 
 
 



 74

THIS PAGE INTENTIONALLY LEFT BLANK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 75

LIST OF REFERENCES 

Berk, Alexander, Lawrence S. Bernstein, and David C. Robertson. MODTRAN: A 
moderate resolution model for LOWTRAN 7. Final Report, Hanscomb AFB, MA: 
United States Air Force Geophysical Laboratory, 1989. 

 
Bukata, Robert P., John H. Jerome, Kirill Ya. Kondratyev, and Dimitry V. Posdnyakov. 

Optical Properties and Remote Sensing of Inland and Coastal Waters. Boca 
Raton, FL: CRC Press, 1995. 

 
Burns, Roger G. Mineralogical Applications of Crystal Field Theory, Second Edition. 

Cambridge, MA: Cambridge University Press, 1993. 
 
Campbell, James B. Introduction to Remote Sensing. New York, NY: The Guilford Press, 

1996. 
 
Chandrasekhar, S. Radiative Transfer. New York, NY: Dover Publications, 1960. 
 
Clark, Roger N. "Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of 

Spectroscopy." In Manual of Remote Sensing, Volume 3, Remote Sensing for the 
Earth Sciences, by Andrew N. Rencz, 3-58. New York, NY: John Wiley & Sons, 
1999. 

 
Cox, C., and W. Munk. "Statistics of the Sea Surface Derived from Sun Glitter." Journal 

of Marine Research, 1954, 13: 198–227. 
 
Feynman, Richard P. QED: The Strange Theory of Light and Matter. Princeton, NJ: 

Princeton University Press, 1985. 
 
Frohlich, C. "Data on total and spectral solar irradiance: comments." Applied Optics, 

1983, 22: 3928. 
 
Fukushima, Hajime, Toratani Mitsuhiro, Hiroshi Murakami, Pierre-Yves Deschamps, 

Robert Frouin, and Akihiko Tanaka. "Evaluation of ADEOS-II GLI Ocean Color 
Atmospheric Correction Using SIMBADA Handheld Radiometer Data." Journal 
of Oceanography, 2007, 63: 533–543. 

 
Gibson, Paul J. Introductory Remote Sensing - Principles and Concepts. London, U.K.: 

Routledge, 2000. 
 
Goetz, Alexander F. H., Gregg Vane, Jerry E. Solomon, and Barrett N. Rock. "Imaging 

Spectrometry for Earth Remote Sensing." Science, 1985, 228: 1147–1153. 
 



 76

Goodman, James A., ZhongPing Lee, and Susan L. Ustin. "Influence of atmospheric and 
sea-surface corrections on retrieval of bottom depth and reflectance using a semi-
analytical model: a case study in Kaneohe Bay, Hawaii." Applied Optics, 2008, 
47: F1–F11. 

 
Hecht, Eugene. Optics: Fourth Edition. Boston, MA: Addison-Wesley, 2001. 
 
Hedley, J. D., A. R. Harbone, and P. J. Mumby. "Simple and robust removal of sun glint 

for mapping shallow-water benthos." International Journal of Remote Sensing, 
2005, 44: 2107–2112. 

 
Hochberg, Eric J., Serge Andrefouet, and Misty R. Tyler. "Sea Surface Correction of 

High Spatial Resolution Ikonos Images to Improve Bottom Mapping in Near-
Shore Environments." IEEE Transactions on Geoscience and Remote Sensing, 
2003, 41: 1724–1729. 

 
Joyce, K. E. "A Method for Mapping Live Coral Cover Using Remote Sensing." Ph.D. 

thesis - University of Queensland, Brisbane, Australia, 2004. 
 
Kay, Susan, John D. Hedley, and Samantha Lavender. "Sun Glint Correction of High and 

Low Spatial Resolution Images of Aquatic Scenes: a Review of Methods for 
Visible and Near-Infrared Wavelengths." Remote Sensing, 2009, 1: 697–730. 

 
Kuster, Tiit, Ele Vahtmae, and Jaan Praks. "A sun glint correction method for 

hyperspectral imagery containing areas with non-neglible water leaving NIR 
signal." Remote Sensing of the Environment, 2009, 113: 2267–2274. 

 
Lee, Zhongping, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer 

S. Patch. "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom 
depths and water properties by optimization." Applied Optics, 1999, 38: 3831–
3843. 

 
Lyzenga, David R., Norman P. Malinas, and Fred J. Tanis. "Multispectral Bathymetry 

Using a Simple Physically Based Algorithm." IEEE Transactions on Geoscience 
and Remote Sensing, 2006, 44: 2251–2259. 

 
Mather, Paul M. Computer processing of remotely-sensed images: an introduction. West 

Sussex, England: John Wiley & Sons, Ltd, 2004. 
 
Mobley, Curtis D. Light and Water, Radiative Transfer in Natural Waters. San Diego, 

CA: Academic Press, Inc., 1994. 
 
 
 



 77

Montagner, F., V. Billat, and S. Belanger. "MERIS Sun Glint Flag Algorithm." European 
Space Agency. June 10, 2003. 
http://envisat.esa.int/instruments/meris/atbd/atbd_2_13.pdf (accessed August 29, 
2012). 

 
Montes, Marcos J., Bo-Cai Gao, and Curtiss O. Davis. NRL Atmospheric Correction 

Algorithms for Oceans: Tafkaa User's Guide. User's Guide, Washington, DC: 
United States Navy Naval Research Laboratory, 2004. 

 
Moore, David S., George P. McCabe, Layth C. Alwan, Bruce A. Craig, and William M. 

Duckworth. The Practice of Statistics for Business and Economics. New York, 
NY: W.H. Freeman and Company, 2011. 

 
Mustard, John F., Matthew I. Staid, and William J. Fripp. "A semianalytical approach to 

the calibration of AVIRIS data to reflectance over water application in a 
temperate estuary." Remote Sensing of the Environment, 2001, 75: 335–349. 

 
Olsen, Richard C. Remote Sensing from Air and Space. Bellingham, Washington: SPIE 

Press, 2007. 
 
Ottaviani, Matteo, Robert Spurr, Knut Stamnes, Wei Li, Wenying Su, and Warran 

Wiscombe. "Improving the Description of Sunglint for Accurate Prediction of 
Remotely Sensed Radiances." Journal of Quantitative Spectroscopy & Radiative 
Transfer, 2008, 109: 2364–2375. 

 
Phillips, Kenneth J.H. Guide to the Sun. Cambridge, MA: Cambridge University Press, 

1995. 
 
Richards, John A., and Xiuping Jia. Remote Sensing Digital Image Analysis - An 

Introduction. Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2006. 
 
Silva, Dennis, and Ron Abileah. "Two Algorithms for Removing Ocean Surface Clutter 

in Multispectral and Hyperspectral Images." Ocean Optics XIV. Kailua-Kona, 
Hawaii, 1999. 

 
SpecTIR. "ProSpecTIR VS Specifications." SpecTIR. 2011. http://www.spectir.com/wp-

content/uploads/2012/02/ProSpecTIR_VS_specs_2011.pdf (accessed August 29, 
2012). 

 
Swayze, Gregg A., Roger N. Clark, Alexander F. H. Goetz, Thomas G. Chrien, and Noel 

S. Gorelick. "Effects of spectrometer band pass, sampling, and signal-to-noise 
ratio on spectral identification using the tetracorder algorithm." Journal of 
Geophysical Research, 2003, 108: 1–30. 

 



 78

Van Der Meer, Freek D., and Steven M. De Jong. Imaging Spectrometry: Basic 
Principles and Prospective Applications. Dordrecht, Netherlands: Springer, 2006. 

 
Van Mol, Barbara, and Kevin Ruddick. "The Compact High Resolution Imaging 

Spectrometer (CHRIS): the future of hyperspectral satellite sensors. Imagery of 
Oostende coastal and inland waters." Airborne Imaging Spectroscopy Workshop. 
Bruges, 2004. 123–125. 

 
Wang, Menghua, and Sean W. Bailey. "Correction of Sun Glint Contamination on the 

SeaWiFS Ocean and Atmosphere Products." Applied Optics, 2001, 40: 4790–
4798. 

 

 



 79

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
3. Dr. Richard C. Olsen 
 Naval Postgraduate School 
 Monterey, California 
 
4. Dr. Fred A. Kruse 
 Naval Postgraduate School 
 Monterey, California 
 
5. Major Neal Hinson 
 United States Air Force 
 Washington, DC 
 
6. Mr. Kevin Whitcomb 
 UTC Aerospace Systems 
 Westford, Massachusetts 
 
7. Mr. Zachary Bergen 
 UTC Aerospace Systems 
 Westford, Massachusetts 
 
8. Mr. Ron Abileah 
 jOmegak 
 San Carlos, California 
 
9. Major Joshua Smith 
 United States Air Force 
 Beale Air Force Base, California 
 
10. Dr. Dan C. Boger 
 Naval Postgraduate School 
 Monterey, California 
 


